
 1

DEVELOPMENT OF MODEL BASED DESIGN APPROACH: MODIFICATION OF DC

MOTOR POSITION CONTROL

Donghyun Kim

Alan Levin Department of Mechanical and Nuclear Engineering

Kansas State University, Kansas 66506

ABSTRACT

Model Based Design (MBD) has been transforming how the

engineers and scientists around the world develop, test, and

implement their ideas into reality. Many companies and

researchers have seen an increase in design and development

efficiency all the while saving costs and development time [1].

As more and more companies are adopting MBD approach, it is

critical to help our students understand fast growing technology.

This paper explores into the basic methods of modifying the

existing microcontroller-based DC motor position controller to

be able to autogenerate source code for embedded deployment

while minimizing time and human error introduced when

manually coded. The resulting control system demonstrates the

time it takes to deploy the position controller and its performance

compared to the existing DC motor apparatus.

Keywords: Model Based Design, DC motor, embedded

system, microcontroller, position control

1. INTRODUCTION

 The Department of Mechanical and Nuclear Engineering’s

curriculum at Kansas State University offers an introductory

control of mechanical systems course. ME570, along with its

laboratory section, focuses on the basic modeling and analysis of

feedback control utilizing DC motor controller [2]. The DC

motor controller is based on the STM32 microcontroller and has

been used by numerous students who graduated from the school.

This is made possible since the system is easy to use based on

the visual component of Graphical User Interface (GUI)

developed specifically for the current apparatus.

One of the shortcomings of utilizing the easy to use system,

as observed by many instructors who taught the course, is the

pattern of lack of motivation in working with the electronics side

of the control theory and interpretation of diagrams. Because the

device is setup in a such way that masks various electronic

components from students, many were able to follow

instructions and complete the course without understanding how

the mechanical control system is implemented in embedded

C/C++ code. To mitigate the issue and to increase the student’s

involvement and understanding of electromechanical system at

the minimum level, interactive diagram building via the MBD

approach could potentially attract more eyes and attention during

the student’s lab session or homework while reinforcing the

knowledge of interpreting diagrams.

Development for the MBD approach of the current control

system is motivated by the efficiency in time it takes for students

to develop, test, and deploy the entire DC motor apparatus for

position control application due to its automated process. The

less time spent compiling and debugging manually written code

means more time working with diagrams and playing with the

device. This time efficiency in the MBD process arises from the

reduction of the complexity inherent to coding with C/C++

especially for students with no coding background. The course

already exposes students in the idea of how to interpret block

diagrams used to describe the mechanical system which then can

be applied directly to build a basic model for position control of

the DC motor. Some students might have trouble understanding

how the block diagrams capture the physical system, but this can

also be further resolved by continuously working with block

diagrams in the MBD. The MBD can eventually lead students to

understanding how the source code is developed and deployed

without going into depth of compilers and other C/C++ related

knowledge. Writing every source code for driving the peripherals

can be too much learning curve in an introductory course.

Incorporated along with the introduction to basics of compilers

and C/C++ language, the MBD can help students to be prepared

to be well rounded controls engineer in dealing with both

theoretical and practical use of the control system.

The MBD implementation proposed in this paper is made

possible with STMicroelectronics’ software development tools

and MathWorks products, MATLAB and Simulink, coupled with

the DC motor apparatus. Utilization of pre-existing program

within the course can eliminate the process which involves

students learning a new program along with added benefits in

saving cost associated with developing a new device. Students

understanding the basic syntax of MATLAB and the basic

knowledge of working with Simulink diagrams can pick up the

MBD and develop, deploy, and test the control system within a

single lab exercise.

And for the last part of the paper, limitations at the current

state of the development is identified and the list of future works

to be completed to investigate the further capabilities of the

apparatus will be included.

2. MATERIALS AND METHODS

This section will cover the theoretical model, drivers for

each component used in the motor lab apparatus, and the

programs used in development of the MBD. All constants and

dynamic system characteristics specific to the motor are listed in

Table 1 [3].

 2

 Variable Units Value

Manufacturer Shinano

Kenshi

Rated Power W 40

Rated Voltage VDC 24

Rated Speed RPM 3,000

Rated Torque N-cm 12.7

Rated Current A 2.5

Torque Constant 𝑘𝑡 N-cm/A 5.0

Back EMF Constant 𝑘𝑏 V/kRPM 5.2

Phases Resistant R Ohm 1.18

Phase Inductance L mH 4.4

Instantaneous Peak

Torque

 N-cm 38.2

Max Speed RPM 5,000

Rotor Inertia J g-cm² 110

Power Rate kW/s 1.48

Mechanical Time

Constant

 ms 5.2

Electrical Time Constant ms 3.7

Mass kg 0.6

Friction Coefficient 𝑏𝑒𝑠𝑡 N-m-

s/rad

3e-5

TABLE 1: MOTOR DYNAMIC SPECS

2.1 Simulink Model

The course, ME 570, first introduces Simulink modeling of

position control in Lab 5. The basic closed loop block diagram

and its relation to the electro-mechanical system is shown below

in Fig. 1 [4]. All constants not specified can be found in Table 1

above. The position control of the device uses unity feedback and

‘fast’ amplifier.

FIGURE 1: BLOCK DIAGRAM OF POSITION

CONTROLLER

The lab requires students in understanding the theoretical

development of the closed loop system of position controller in

Simulink environment. From the Fig. 1, students are then asked

to complete a Simulink diagram to simulate the position control

by inserting missing blocks such as the saturation block to limit

the current feeding into the controller. The completed Simulink

diagram is shown below in Fig. 2. As part of the lab, students

must learn how to interpret the diagram in order to place the

saturation block to specifically limit the current. This exercise

can help students realize the order of the blocks is important as

well as how the signal propagates within the diagram.

FIGURE 2: SIMULINK DIAGRAM FROM LAB 5 OF ME570

Prior to transition from the lab 5 exercise above into the

MBD exercise that can be deployed to and debugged with the

microcontroller, the host PC must be installed with the following

programs first: STM32-MAT/TARGET, STM32CubeIDE, and

STM32CubeMX from STMicroelectronics, and MathWorks’

additional products such as Simulink Coder and MATLAB

Coder. STM32-MAT/TARGET is used within Simulink to

compile and export the diagram to various Integrated

Development Environment (IDE) projects. The program also

provides end users with various blocks that can be utilized to

configure the settings of the target microcontroller board and to

access the peripherals in use. In the process of configuring the

target board within the Simulink diagram, STM32CubeMX

program is launched to assist in selecting the microcontroller and

its available peripherals. The program will then autogenerate the

base project code along with Hardware Abstract Layer (HAL)

library to control the peripherals. STM32CubeMX program was

developed with one of the same benefits of the MBD in mind by

STMicroelectronics. It is a graphical tool for configuring and

generating initialization C code for the processor of the target

board to minimize human errors from manual coding. The

program is shown in Fig. 3 below.

+
_

Controller

TF

Mechanical

Dynamics
Position

Command

)(sc)(sGc

)(sIc)(sI

Motor

Current

(Torque)

)(sGm

)(s

Angular

Position

Motor

Current

Command

Computer

Closed

Loop Current

Control System

)(sTi
)(sE

Position

Error

drtp

drtp

c

pc

drt
m

kkKbsJs

kkK

s

s

KsG

bsJs

kk

sI

s
sG

++
=

=

+
==

2

2

)(

)(

CLTF and

controller alproportion ,)(

)(

)(
)(

problem) for this degreesin (measuredposition angular

controller of zero/

controller ofgain derivative

controller ofgain alproportion

)fast"" assumed (amplifier 1)(

conversionunit postion angular)(180

handout) labmotor (fromconstant uemotor torq

s/rad)mN 103 be to(estimated coeficientfriction viscous

handout) labmotor (from inertiamotor

5

=

==

=

=

=

==

=

=

=

−

θ(t)

KKz

K

K

sT

radk

k

b

J

dp

d

p

i

dr

t

ikT t=

b

J

i
1bk
+

_

R L

V
24 V Supply,

and Motor

Amp with

Current Control

ci

Micro-

controller

GUI

 3

FIGURE 3: STM32CubeMX GUI

When the Simulink diagram autogenerates and exports the

project code, any supported IDE’s can be used to compile and

deploy to the target board for debugging purposes. In this paper,

STM32CubeIDE is used simply because it is based on Eclipse

and is free to use.

2.2 Simulink Blocks

As captured in Fig. 4, the appearance of the MBD of position

control is as simple as the block diagram shown in Fig. 1.

Achievement of simplicity in appearance can be a great deal to

many students as in not being discouraged when a complex

diagram is presented during the lab. Simplicity of the diagram is

made possible with the peripheral driver blocks working under

the hood to autogenerate project code. The peripheral driver

blocks, named DigitalOut and UART2_TX, were developed to

control the amplifier and to transmit the encoder signal back to

the PC using UART. Translation between the driver code and the

visual blocks can be done utilizing Simulink’s built in MATLAB

System block [5]. The structure of the system block first defines

the number of inputs and outputs, any associated header files to

be called, and manipulating the signal by calling peripheral

specific C functions. For example, UART2_TX system block

will take the encoder signal as an input and transmit the signal in

human readable ASCII format to the serial monitor on the host

PC. Any serial monitor programs such as Arduino and PuTTY

can be used for reading and writing the serial data.

FIGURE 4: SIMULINK MBD OF POSITION CONTROL

In comparison to the knowledge of C/C++ required to drive

the peripherals on the target board with manually written source

files, the students can simply automate the process and save

significant amount of time and human errors by utilizing the

premade driver blocks.

Inside PWMAnalogOut and Encoder blocks are the driver

blocks provided from STM32-MAT/TARGET along with the

built in Simulink blocks as shown in Fig. 5 and 6. The blocks

named TIM1 and TIM3 are the peripheral driver blocks from

STMicroelectronics. TIM3 block is associated with generating

Pulse Width Modulation (PWM) to drive the motor. The output

signal from Proportional-Derivative (PD) controller block in Fig.

4 is used to determine the direction and value of duty cycle to

input to TIM3 block. The block named dutyCycle will take the

saturated signal and convert into percentage output to feed into

TIM3 PWM block.

FIGURE 5: INSIDE THE PWMAnalogOut BLOCK

FIGURE 6: INSIDE THE Encoder BLOCK

TIM1 block from Fig. 6 above is essentially the encoder

block. It keeps track of the direction and counts from the motor

encoder to convert it into the angular position in degrees.

Count2Angle block in conjunction with the gain block are used

for unit conversion according to the encoder’s hardware

documentation. Encoder block does not have an input port as it

is the feedback sensor. The output port is connected to

UART2_TX block to send the data back to the host PC for the

verification of data integrity. Before building the model within

IDE, make sure to set the linker flag “-u_printf_float” in order to

pass on float values in UART2_TX block. TIM1 and TIM3

blocks needs to be configured according to the board

manufacturer’s data sheet and user manual to conform to the

available hardware clock speed and other necessary register

values.

2.3 Model Deployment to Microcontroller

Once the Simulink diagram is built, STM32_Config block

will compile and link all autogenerated code to export as a

project specific filetype to preselected IDE. An IDE then can be

executed in order to build and deploy the project to the target

microcontroller board.

At this stage of the MBD, the board is ready for debugging

using an IDE which is the most useful tool in identifying any

bugs within the system. In the process of debugging, developers

of source driver blocks can step through the execution of the

board to recognize and assure the correct behavior of any custom

blocks driving the peripherals. When the debugging procedure is

 4

completed the blocks are ready to be used in the MBD. One of

the benefits of custom blocks developed and tested to be used in

the MBD is the reusability. When a custom block is tested to

drive the peripherals as required, it can be then used in any of the

MBD projects which requires to drive the same peripherals. As

an example, UART2_TX block can be used to create a

communication device using any STM32F4 Discovery boards.

The entire process of compiling and exporting C/C++

projects from the Simulink diagram to deploying to the target

board takes less than two minutes depending on the host PC’s

hardware specification, mainly the Core Processing Unit (CPU)

and Random-Access Memory (RAM). With the current machine

in use, equipped with four CPU cores at 2.60GHz and 16GB of

RAM, Simulink takes less than a minute to export and

STM32CubeIDE takes roughly seven seconds to build as shown

in Fig. 7 and Fig. 8 respectively.

FIGURE 7: BUILD PROCESSING TIME

FIGURE 8: IDE’S PROJECT BUILD TIME

The output from the position controller built using the MBD

was verified to be sampling the encoder data and running the

control loop at 10kHz. The plot of the output data using a

MATLAB script is shown in Fig. 9. The initial plan for the result

section was to include the current device’s position control

output as well in order to compare the two results but due to the

fact that the lab was inaccessible, this will be included in the next

paper.

FIGURE 9: STEP RESPONSE OF PD CONTROLLER

3. CONCLUSION

This paper has shown the implementation of the MBD to

an existing DC motor control apparatus for executing a simple

position control algorithm. At the current state of the

development for the MBD implementation, the device is only

limited to position control with no communication protocol

established. This results in incapability of modifying

parameters such as the target reference input position or

controller gain values. When the Simulink diagram builds and

exports the project code to an IDE, everything is hardcoded into

the target board and it only transmits positional data back to the

host PC. With the current limitation of the board’s

functionality, further development in the driver blocks are

required in order to create more user-friendly interface for the

students to use in the lab environment. Main custom driver

blocks to be developed are the following: UART2_RX and

Serial_RX.

UART2_RX block to receive all parameter changes such

as the controller gain values and the target reference position.

This block will allow the target board to act as a transceiver

mimicking the current device used in the lab.

Serial_RX block to read and import the position data into

the workspace using a new Simulink diagram. This diagram

will be separate from the target board’s diagram and will

explore the possibility of enabling the real-time data analysis

such as the plotting incoming data from the device. If the

overhead of plotting function within Simulink is minimal,

students could plot the data and observe the incoming response

data in real-time.

ACKNOWLEDGEMENTS

The modification of DC motor apparatus is made possible

by taking advantage of Dr. Schinstock’s source code for the

original motor lab device.

 5

REFERENCES

[1] “Adopting Model-Based Design”,

https://www.mathworks.com/campaigns/portals/adopting-

model-based-design.html.

[2] “ME 570 – Control of Mechanical Systems I”,

https://catalog.k-

state.edu/preview_course_nopop.php?catoid=16&coid=82554.

[3] “Motorolab”, https://k-

state.instructure.com/courses/78873/files/folder/Info%20For%2

0First%20Day?preview=9837536.

[4] “Laboratory #5”, https://k-

state.instructure.com/courses/86477/files/folder/Labs/Lab5?pre

view=12788796.

[5] “MATLAB System Block”,

https://www.mathworks.com/help/simulink/ug/what-is-matlab-

system-block.html.

https://www.mathworks.com/campaigns/portals/adopting-model-based-design.html
https://www.mathworks.com/campaigns/portals/adopting-model-based-design.html
https://catalog.k-state.edu/preview_course_nopop.php?catoid=16&coid=82554
https://catalog.k-state.edu/preview_course_nopop.php?catoid=16&coid=82554
https://k-state.instructure.com/courses/78873/files/folder/Info%20For%20First%20Day?preview=9837536
https://k-state.instructure.com/courses/78873/files/folder/Info%20For%20First%20Day?preview=9837536
https://k-state.instructure.com/courses/78873/files/folder/Info%20For%20First%20Day?preview=9837536
https://k-state.instructure.com/courses/86477/files/folder/Labs/Lab5?preview=12788796
https://k-state.instructure.com/courses/86477/files/folder/Labs/Lab5?preview=12788796
https://k-state.instructure.com/courses/86477/files/folder/Labs/Lab5?preview=12788796
https://k-state.instructure.com/courses/78873/files/folder/Info%20For%20First%20Day?preview=9837536
https://k-state.instructure.com/courses/78873/files/folder/Info%20For%20First%20Day?preview=9837536

